Dynamics and Kinetics. Exercises 11 & 12

Problem 1: TST rate constant

Use the transition-state theory to estimate the rate constant at 300K for the reaction

$$H + HBr \rightarrow H_2 + Br$$
.

Barrier height (difference between zero-point energies of the transition state and reactants) is 5kJmol⁻¹. Molecule HBr has a bond length $d_{\text{H-Br}} = 141.4$ pm and vibrational wave number $\tilde{\mathbf{v}} = 2650 \text{cm}^{-1}$. Assume the transition state to be linear with $d_{\text{H-H}} = 150 \text{pm}$ and $d_{\text{H-Br}} = 142 \text{pm}$ and with vibrational wave numbers $\tilde{\mathbf{v}}_{\text{ss}} = 2340 \text{cm}^{-1}$ (symmetric stretch) and $\tilde{\mathbf{v}}_{\text{bend}} = 460 \text{cm}^{-1}$ (two degenerate bending vibrations).

Problem 2: Pre-exponential factor

Estimate, on the basis of TST, the pre-exponential factor at 300K for a bimolecular gas-phase reaction between an atom and a diatomic molecule, with the formation of a linear transition state. Consider the translational partition functions to be 10^{32} m⁻³, rotational partition functions for each degree of freedom to be 10, and the vibrational partition functions to be unity.

Problem 3: Equilibrium constant for isotopic change

Compute the equilibrium constant at 300K for the gas phase reaction

$$H_2 + D_2 \rightleftharpoons 2HD.$$

The vibrational wave numbers are 4371cm⁻¹ for H₂, 3786 cm⁻¹ for HD, and 3092cm⁻¹ for D₂. The internuclear separation is 74pm for all three forms.

Problem 4: Entropy of activation

Two reactions of the same order have identical activation energies and entropies of activation differing by 50JK⁻¹ mol⁻¹. What is the ratio of their rate constants (according to TST) at any temperature?

Problem 5: $\Delta H^{\dagger^{\circ}}$, $\Delta S^{\dagger^{\circ}}$, and $\Delta G^{\dagger^{\circ}}$

The gas-phase reaction $H_2+I_2 \rightarrow 2HI$ is second order. Its rate constant at 400°C is 2.34 x 10⁻² dm³ mol⁻¹s⁻¹ and its activation energy is 150kJmol⁻¹. Calculate, at 400°C, the standard enthalpy, entropy, and Gibbs free energy of activation (i.e., $\Delta H^{\ddagger\circ}$, $\Delta S^{\ddagger\circ}$, $\Delta G^{\ddagger\circ}$), and the preexponential factor.